Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1969). B25, 1919
The crystal structure of $\mathbf{K U}_{2} \mathbf{F}_{9}{ }^{*}$ By George Brunton, Reactor Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, U. S. A.
(Received 1 May 1969)
The compound $\mathrm{KU}_{2} \mathrm{~F}_{9}$ crystallizes with space group Pnma and with lattice constants $a_{0}=8.7021$ (9), $b_{0}=11.4769$ (4) and $c_{0}=7 \cdot 0350$ (3) \AA. The U^{4+} ions are coordinated by $9 \mathrm{~F}^{-}$at distances 2.292 (1) to 2.39 (3) \AA and the K^{+}ions are coordinated by $10 \mathrm{~F}^{-}$at distances $2 \cdot 62$ (2) to $3 \cdot 21$ (2) \AA.

The complex fluoride compound $\mathrm{KU}_{2} \mathrm{~F}_{9}$ is an equilibrium phase in the fused salt system KF. UF 4 and it melts incongruently to $\mathrm{UF}_{4}+$ liquid at $765^{\circ} \mathrm{C}$ (Thoma, Insley, Landau, Friedman \& Grimes, 1958). The lattice parameters and space group for $\mathrm{KU}_{2} \mathrm{~F}_{9}$ were first determined by Zachariasen (1948) but he did not determine its structure. This paper presents the values for refined lattice parameters; $a_{0}=8.7021 \pm 0.0009, b_{0}=11.4769 \pm 0.0004$ and $c_{0}=7.0350$ $\pm 0.0003 \AA\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha}_{1}=1.54050\right)$, at $23^{\circ} \mathrm{C}$ and the atomic parameters for $\mathrm{KU}_{2} \mathrm{~F}_{9}$ determined from three-dimensional $\mathrm{Cu} K \alpha$ X-ray data (Tables 1 and 2). The calculated density is $6.4851 \mathrm{~g} . \mathrm{cm}^{-3}$ and $Z=4$.

Experimental

Single crystals of $\mathrm{KU}_{2} \mathrm{~F}_{9}$ were selected from an ingot of the composition KF•UF $433 \frac{1}{2}-66 \frac{2}{3}$ mole per cent. The single crystals were ground to nearly spherical shape in an air driven race and one crystal of ellipsoidal shape ($0.182 \times$ $0.182 \times 0.195 \mathrm{~mm}$) was mounted on a computer operated Picker four-circle goniostat equipped with a scintillation counter detector. Independent reflections $h k l, h \geq 0, k \geq 0$ and $l \geq 0$ were measured to $2 \theta=145^{\circ}$ with unfiltered Cu $K \alpha$ radiation by the 2θ scan technique. The 740 reflections were corrected for Lorentz and polarization factors and absorption ($\mu=1924.07 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} K \alpha$) and reduced to F_{o}^{2}.

[^0]The conditions for reflection, $h k l$, no conditions, $0 k l$, $k+l=2 n$ and $h k 0, h=2 n$ and the diffraction symmetry, $m m m$ are consistent with space groups $P n a 2_{1}$ (33) and Pnma (62). The final structure confirms the choice of Pnma (Zachariasen, 1948).

The structure was refined by iterative least squares with a modification of the Busing, Martin \& Levy (1962) computer program. The starting parameters were determined from three-dimensional sections of the Patterson function. The quantity minimized by the least-squares program was $\Sigma w\left|\left|s F_{o}^{2}\right|-\left|F_{c^{2}}^{2}\right|^{2}\right.$ with weights, w, equal to the reciprocals of the variances which were estimated from the empirical equation:

$$
\sigma^{2}\left(F_{o}^{2}\right)=\left[T+B+(0.05(T-B))^{2}\right] /\left[A(\mathrm{Lp})^{2}\right]
$$

where $T=$ total counts, $B=$ background counts, $A=$ absorption correction, and Lp $=$ Lorentz and polarization corrections (Brown \& Levy, 1964). The scattering factors for the ions were taken from Cromer \& Waber (1965) and the anomalous dispersion terms, $\Delta f^{\prime}=-5$ and $\Delta f^{\prime}=15$ electrons (Dauben \& Templeton, 1955), were included in the U^{4+} scattering factors. Anisotropic temperature factors were calculated for U^{4+} and K^{+}and the temperature factors for F^{-}were constrained to be isotropic.

The discrepancy indices are,

$$
\begin{aligned}
& R_{1}=\Sigma| | F_{o}^{2}\left|-\left|F_{c^{2}}\right|\right| / \Sigma\left|F_{o} 2\right|=0.1228 \\
& R_{2}=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|=0.0682
\end{aligned}
$$

Table 1. The atomic parameters for $\mathrm{KU}_{2} \mathrm{~F}_{9}\left(\times 10^{3}\right)$
Standard errors in parentheses, corresponding to the last significant digit, are given by the variance-covariance matrix.

	x	y	z	$\beta_{11}{ }^{*}$	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
U	$325 \cdot 3$ (1)	$449 \cdot 58$ (6)	$346 \cdot 8$ (2)	$2 \cdot 8$ (2)	$1 \cdot 18$ (8)	$4 \cdot 3$ (3)	-0.04 (6)	-0.3 (1)	-0.02 (5)
K	463 (2)	250	857 (2)	5 (2)	$1 \cdot 8$ (5)	10 (2)	0	4 (2)	0
F(1)	-4 (2)	598 (2)	76 (2)	25 (6)	\dagger	\dagger	\dagger	\dagger	\dagger
F(2)	290 (2)	96 (2)	29 (3)	47 (8)	\dagger	\dagger	\dagger	\dagger	\dagger
F(3)	283 (3)	607 (2)	145 (3)	45 (8)	\dagger	\dagger	\dagger	\dagger	\dagger
F(4)	562 (3)	80 (2)	199 (3)	47 (7)	\dagger	\dagger	\dagger	\dagger	\dagger
F(5)	321 (3)	250	338 (3)	4 (2)	\dagger	\dagger	\dagger	\dagger	\dagger

[^1]\dagger Constrained to be isotropic.

Table 2. Observed and calculated structure factors for $\mathrm{KU}_{2} \mathrm{~F}_{9}$

for all reflections and the standard deviation of an observation of unit weight, $\left[\Sigma W\left(F_{o}-F_{c}\right)^{2} /\left(n_{o}-n_{v}\right)\right]^{1 / 2}$ is 2.596 where n_{o} is the number of observations and n_{v} the number of variables. The interatomic distances are listed in Table 3 and the observed and calculated structure factors in Table 2. An extinction correction was applied to F_{c} by the method suggested by Zachariasen (1967).

Table 3. The interatomic distances for $\mathrm{KU}_{2} \mathrm{~F}_{9}$
The numbers in parentheses are the standard errors in terms of the last significant digit.

$\mathrm{U}-\mathrm{F}(5)$	$2.292(1) \AA$	$2[\mathrm{~K}-\mathrm{F}(2)]$	$2.62(2) \AA$
$\mathrm{U}=\mathrm{F}(1)$	$2.30(2)$	$2[\mathrm{~K}-\mathrm{F}(1)]$	$2.66(2)$
$\mathrm{U}-\mathrm{F}(2)$	$2.32(2)$	$2[\mathrm{~K}-\mathrm{F}(3)]$	$2.75(2)$
$\mathrm{U}-\mathrm{F}(1)$	$2.32(2)$	$2[\mathrm{~K}-\mathrm{F}(3)]$	$3.09(2)$
$\mathrm{U}-\mathrm{F}(3)$	$2.32(2)$	$2[\mathrm{~K}-\mathrm{F}(4)]$	$3.21(2)$
$\mathrm{U}-\mathrm{F}(4)$	$2.33(2)$	$\mathrm{F}(1)-\mathrm{F}(1)$	$2.49(3)$
$\mathrm{U}-\mathrm{F}(4)$	$2.34(2)$	$\mathrm{F}(1)-\mathrm{F}(3)$	$2.55(3)$
$\mathrm{U}-\mathrm{F}(2)$	$2.34(2)$	$\mathrm{F}(1)-\mathrm{F}(2)$	$2.60(3)$
$\mathrm{U}-\mathrm{F}(3)$	$2.39(2)$	$\mathrm{F}(1)-\mathrm{F}(4)$	$2.65(3)$
$\mathrm{F}(1)-\mathrm{F}(3)$	$2.70(3)$	$\mathrm{F}(1)-\mathrm{F}(4)$	$2.71(3)$
$\mathrm{F}(1)-\mathrm{F}(5)$	$2.89(3)$	$\mathrm{F}(2)-\mathrm{F}(3)$	$2.47(3)$
$\mathrm{F}(2)-\mathrm{F}(4)$	$2.66(3)$	$\mathrm{F}(2)-\mathrm{F}(4)$	$2.76(3)$
$\mathrm{F}(2)-\mathrm{F}(4)$	$2.78(3)$	$\mathrm{F}(2)-\mathrm{F}(5)$	$2.82(3)$
$\mathrm{F}(2)-\mathrm{F}(4)$	$2.89(3)$	$\mathrm{F}(3)-\mathrm{F}(4)$	$2.79(3)$
$\mathrm{F}(3)-\mathrm{F}(5)$	$2.86(3)$	$\mathrm{F}(4)-\mathrm{F}(5)$	$2.99(3)$

Discussion

Fig. 1 is a stereoscopic pair of drawings showing the nearest neighbor fluoride anions around U^{4+} and K^{+}which in turn are the nearest neighbor cations to $\mathrm{F}(5)$ at $x=0 \cdot 321, y=\frac{1}{2}$, $Z=0.338$. The uranium ion is coordinated by $9 \mathrm{~F}^{-}$at the corners of a polyhedron which resembles a trigonal prism with a pyramid on each of the three faces. The K^{+}ion is coordinated by $6 \mathrm{~F}-$ at about $2.7 \AA$ and by two F^{-}at $3.09 \AA$ forming a distorted cube around it. Two additional fluoride ions, $F(4)$, are at $3.21 \AA$ on the same side of the cube and nearly coplanar with each set of four fluoride ions forming the top and bottom of the cube. The U^{4+} and K^{+}polyhedra each form alternating layers perpendicular to the b_{0} axis with the K^{+}polyhedra centered at $b_{0}=\frac{1}{4}$ and $\frac{3}{4}$. The U^{4+} polyhedra share edges with each other within a layer and edges with K^{+}polyhedra in adjacent layers. The K^{+}polyhedra also share edges with one another within a layer.

Fig. 1. A stereoscopic view of the structure of $\mathrm{KU}_{2} \mathrm{~F}_{9}{ }^{\text {- }}$ with one fourth unit cell outlined.

The fluorine ion $F(5)$ is shared only by U^{4+} ions across the K^{+}layers but is too distant, $4 \AA$, to be considered shared by K^{+}ions.

The interatomic distances $F(1)-F(1), 2 \cdot 49(3) \AA$ and $F(1)-$ $F(3), 2 \cdot 55(3) \AA$ are considerably shorter than twice $1 \cdot 36 \AA$, the usual ionic radius for F^{-}(Pauling, 1960). Recent structure determinations show that $\mathrm{F}^{-}-\mathrm{F}^{-}$interatomic distances may be as short as $2 \cdot 241(11) \AA$ in $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathrm{~F}_{31}$ (Burns, Ellison \& Levy, 1968) and $2 \cdot 40(3) \AA$ in RbPaF_{6} (Burns, Levy \& Keller, 1968). These two compounds are similar to $\mathrm{KU}_{2} \mathrm{~F}_{9}$ in that they are complex fluorides with similar sizes and kinds of ions. The $\mathrm{Zr}-8 \mathrm{~F}$ antiprism in $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathrm{~F}_{31}$ has $\mathrm{F}^{-}-\mathrm{F}^{-}$ distances as short as $2 \cdot 504(3) \AA$ and the $2 \cdot 40(3) \AA$ distances observed for RbPaF_{6} occur in the $\mathrm{Pa}-8 \mathrm{~F}$ dodecahedron. In $\mathrm{KU}_{2} \mathrm{~F}_{9}$ the six $\mathrm{K}-\mathrm{F}$ distances and the nine $\mathrm{U}-\mathrm{F}$ distances are equal to the sum of the ionic radii so that the bonding is primarily ionic. The application of Hannay \& Smyth's (1946) formula for the calculation of percentage of ionic character indicates that the K-F bond is 88% ionic while the U-F bond should have 55% ionic character. It is evident that most of the $\mathrm{F}^{-}-\mathrm{F}$ - distances in these complex fluorides reflect the ionic nature of the bonding but that some covalent bonding occurs in the same compound.

References

Brown, G. M. \& Levy, H. A. (1964). J. Phys. 25, 497.
Burns, J. H., Ellison, R. D. \& Levy, H. A. (1968). Acta Cryst. B24, 230.
Burns, J. H., Levy, H. A. \& Keller, O. L. Jr (1968). Acta Cryst. B24, 1675.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). USAEC Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T. \& Waber J. T. (1965). Acta Cryst. 18, 104.

Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Hanny, N. B. \& Smyth, C. P. (1946). J. Amer. Chem. Soc. 68, 171.
Pauling, L. (1960). Nature of the Chemical Bond, 3rd Ed. p. 514. Ithaca: Cornell Univ. Press.
thoma, R. E., Insley, H., landau, B. S., Friedman, H. A. \& Grimes, W. R. (1958). J. Amer. Ceram. Soc. 41, 538.
Zachariasen, W. H. (1948). J. Amer. Chem. Soc. 70, 2147.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558.

Acta Cryst. (1969). B25, 1669.
The crystal structure of calcium 1,3-diphosphorylimidazole hexahydrate (revised title). By L. NEEL BEARD and
P. Galen Lenhert, Department of Physics, Vanderbilt University, Nashville, Tennessee 37203, U.S. A.
(Received 13 March 1969)
A correction of the title of Acta Cryst. (1968), B24, 1529.

A paper on the structure of the title compound was published (Beard \& Lenhert, 1968) under thetitle The Crystal Structure of 1,3-Diphosphorylimidazole. This title should be
replaced by The Crystal Structure of Calcium 1,3-Diphosphorylimidazole Hexahydrate in order to reflect the actual composition of the substance studied.

Reference

Beard, L. N. \& Lenhert, P. G. (1968). Acra Cryst. B24, 1529.

[^0]: * Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.

[^1]: * Coefficients in the temperature factor; $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.

